BASIC
Reference Manual

Order No. AA-L334A-TK
Including AD—L334A-T1

February 1984

This manual describes language elements, compiler commands, and com-
piler directives of VAX BASIC and PDP-11 BASIC-PLUS-2.

OPERATING SYSTEM AND VERSION: VAX/VMS V3
RSX—11M-PLUS V2
RSX-11M V4
RSTS/E V8

’
SOFTWARE VERSION: VAX BASIC V2

PDP-11 BASIC-PLUS-2 V2

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright © 1982, 1984 by Digital Equipment Corporation. All Rights Reserved.

The postage—paid READER’S COMMENTS form on the last page of this document requests your
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

i)

DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem—10 P/OS VMS
DECSYSTEM-20 Professional VT

DECUS Rainbow Work Processor

| Commercial Engineering Publications typeset this manual using DIGITAL’s TMS—11 Text
; Management System.

Contents

To the Reader

PART | — Program Elements and Structure

1.0

2.0

3.0
4.0

5.0

Page

Xi

Elements of a BASIC Programo 1
1.1 Line Numbers.o 1
1.2 Labels e 2
1.3 Statements L L L L Lo 3
1.3.1 Keywords.o 3

1.3.2 Single-Statement Lines and Continued Statements 4

1.3.3 Multi-Statement Lines. L.5

1.4 Compiler Directiveso 7
1.5 Line Terminatorso 7
1.6 Lexical Order. 8
Program Documentationo 000000 8
2.1 Comment Fields.o L0 8
2.2 REM Statements.o o 9
2.3 Empty Statements L oL oL Lo L 0oL 10
BASIC Character Seto 10
BASIC Data Types o o oo e e e 10
4.1 Implicit Data Typing. 13
4.2 Explicit Data Typing 13
Constants. Lo Lo e e e e 14
5.1 Numeric Constants 15
5.1.1 Floating-Point Constants 15

5.1.2 - Integer Constants 17

5.1.3 Packed Decimal Constants (VAX-11 BASIC). 17

5.2 String Constants.o o e 18
5.3 Named Constants 19
5.3.1 Naming Constants Within a Program Unit. 19

5.3.2 Naming Constants External to a Program Unit 20

5.4 Explicit Literal Notation 21
5.5 Predefined Constants. 23

fii

6.0

7.0

Variables 25

6.1 Variable Names. 25
6.2 Implicitly Declared Variables 26
6.3 Explicitly Declared Variables 27
6.4 Subscripted Variables and Arrays 27
6.5 Initialization of Variables. 29
Expressions L L L 30
7.1 Numeric Expressions. 31
7.1.1 Floating-Point and Integer Promotion Rules 31
7.1.2 DECIMAL Promotion Rules (VAX—11 BASIC). 32
7.2 String Expressions L. Lo 34
7.3 Conditional Expressions 34
7.3.1 Numeric Relational Expressions 35
7.3.2 String Relational Expressions 36
7.3.3 Logical Expressions. e e e e 37
7.4 Evaluating Expressions 40

PART Il - Compiler Commands

iv

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0

11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0

APPEND . . . © . L 43
ASSIGN (VAX=TT1 BASIC). s, 45
BRLRES (BASIC-PLUS-2) 46
BUILD (BASIC-PLUS-2) 48
$Command L 49
COMPILE. 51
CONTINUE. 53
DELETE s, 54
DSKLIB (BASIC-PLUS-2) 55
EDIT. . . o, 57
10.1 DEFINE (BASIC-PLUS-2). 61
10.2 EXECUTE (BASIC-PLUS-2) 62
10.3 EXIT or CTRL/Z (BASIC-PLUS-2) 63
10.4 FIND (BASIC-PLUS-2). 64
10.5 INSERT (BASIC-PLUS-2). 65
10.6 SUBSTITUTE (BASIC-PLUS-2) 66
EXIT o o o o, 68
HELP. o, 69
IDENTIFY. . . . o . o 71
INQUIRE. o 72
LIBRARY (BASIC-PLUS-2) 73
LISTand LISTNH o 75
LOAD 77
LOCK . . . 78
NEW. o o, 79
ODLRMS (BASIC-PLUS=2), 80
OLD 82
Qualifiers. L 83
RENAME 95
REPLACE, 97

25.0
26.0
27.0
28.0
29.0
30.0
31.0
32.0
33.0
34.0

PART lll - Compiler Directives

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0

PART IV — Statements

February 1984

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0

RESEQUENCE (VAX=1T BASIC) o ot 98
RMSRES (BASIC-PLUS-2). o .. 100
RUN and RUNNH. o . 102
SAVE. R .. 104
SCALE e . 105
SCRATCH . . o o o o . 106
SEQUENCE. s 107
SET . . o e s .. 108
SHOW . . . o . 109
UNSAVE © . . 111
%BABORT. o . 113
%CROSS o, .. 114
BIDENT e 115
%IF—%THEN—%ELSE—%END—%IF 117
%INCLUDE o o o . 119
WLET . o 121
WBLIST . o .o122
%BNOCROSS . . . o o o .. 123
BWNOLIST . . . o o ... 124
%BPAGE o .. 125
BSBTTL . . o o o e 126
%TITLE. s 127
BVARIANT o o . 128
CALL. . . o .. 129
CHAIN . . 134
CHANGE. 136
CLOSE . . o 138
COMMON . . . 139
DATA P 143
DECLARE. . . . o o 145
DEF . . . o e 149
DEF*. . . 153
DELETE . . . o o o o 157
DIMENSION 158
END . . o 162
EXIT . o o o e 164
EXTERNAL . . . o o o o s e 166
FIELD . . o o o e . 169
FIND. . o o e e 171
ENEND . o o o e 177
ENEXIT. . o o 178
FOR . . o s 179
FREE (VAX—11 BASIC) o o o o e e e e e e e 182
FUNCTION . . . o o s s 183
FUNCTIONEND. o o s s e 187
FUNCTIONEXIT. . . o o o o o s s s e 188

\%

vi

24.0
25.0
26.0
27.0
28.0
29.0
30.0
31.0
32.0
33.0
34.0
35.0
36.0
37.0
38.0
39.0
40.0
41.0
42.0
43.0
44.0
45.0
46.0
47.0
48.0
49.0
50.0
51.0
52.0
53.0
54.0
55.0
56.0
57.0
58.0
59.0
60.0
61.0
62.0
63.0
64.0
65.0
66.0
67.0
68.0
69.0
70.0
71.0
72.0
73.0
74.0
75.0
76.0
77.0
78.0

GET . . o s e e 189
GOSUB oo s s e 195
GOTO o oo s s e e e 196
IF o e 197
INPUT . . . 0 o oo o . 199
INPUT LINE 0 o o oo 202
ITERATE o o o o s e e 204
KILL . . . o o o s e e e e 205
LET . . o o o s s e e e 206
LINPUT . . o o o o o oo oo o e e 207
LSET . . . o o o o o s e e . 209
L 210
MAP DYNAMIC. o oL e 213
MARGIN (VAX=TT BASIC) oo 215
MAT . L o L e e 216
MAT INPUT © . . 0 . 0 oo oo 219
MAT LINPUT . . . © 0 0 oo 0 oo 221
MAT PRINT. o o oo oo 223
MAT READ o o oL e 225
MOVE o e 227
NAMEAS o oo 230
NEXT . . o o o o o e 231
NOMARGIN (VAX-11 BASIC). 232
ONERRORGOBACK oo o oo 233
ON ERROR GOTO oo o e s 234
ONERRORGOTO O o o e e 235
ON GOSUB o oo e e 236
ONGOTO o o o s e e s s s e 237
OPEN o s e e 238
OPTION o L o oo s e 248
PRINT . . . o o o o o e e e 251
PRINT USING. _ . . . o oo oo e 254
PUT . . o o e e s e 258
RANDOMIZE« . o o oL e 260
READ oo e e e 261
RECORD (VAX-11 BASIC) s 263
REM . 0 o o o e e 267
REMAP. o o s 268
RESTORE (RESET) o o oo oo 271
RESUME o o o o 272
RETURN . . o o o oo oo oo 273
RSET. . . o . o o e e 274
SCRATCH o oo e e 275
SELECT. o 276
SLEEP oo 278
STOP . . o o s s e 279
SUB . . o o s s e e 280
SUBEND o oL e 284
SUBEXIT . .« . o o o oo e e e 285
UNLESS o o o oo s 286
UNLOCK. o oo oo e s e e 287
UNTIL . L o o o oo s e e 288
UPDATE o o o o o e e 289
WAIT . o o o s e e e 291
WHILE. . . . o o o o oo 292

PART V - Functions

1.0 ABS .« o 293
2.0 ABS% . . e 294
3.0 ASCH . o o 295
4.0 ATN . o o 296
5.0 BUFSIZ. . o o o e 297
6.0 CCPOS. . o o o o o 298
7.0 CHRS . o o .. .299
8.0 COMP% . o o o o e 300
9.0 COS .« o 301
10.0 CTRLC .« o o o o 302
11.0 CVTS$. o o o o o o 303
12,0 CVTXX. © o o e e 304
13.0 DATES . © o o o o 306
14.0 DECIMAL (VAX=11 BASIC) o o o v e i e e 307
15.0 DET . o o o o e 308
16,0 DIES .« o o o 309
17.0 ECHO . . . o o o 310
18.0 EDITS © o o o o o 311
190 ERL . o o o e 312
200 ERNS . o o 313
21.0 ERR . o o o o 314
22.0 ERTS. . o o 315
23.0 EXP . . oo 316
240 FIX o o o e 317
25.0 FORMATS .« o o o oo e 318
26.0 FSPS . . o 319
27.0 FSS$ (BASIC=PLUS=2) . . + © v v e e 320
28.0 GETRFA .« o o o e 321
29.0 INSTR . o o o 322
30,0 INT .« o o o e 324
31.0 INTEGER .« o o e e o e 325
32,0 LEFTS . o o o e 326
33.0 LEN © o o o 327
34.0 LOC (VAX=11 BASIC) . .« o o o oo e 328
350 LOG. . o o o e 329
36.0 LOGIO. . o o e e 330
37.0 MAG. .« o o o 331
38.0 MAGTAPE . . . o o o 332
39.0 MAR (VAX=1T BASIC) . .« o v o o e e 334
40.0 MID$. o o e 335
41.0 NOECHO . . . o o o e 336
42.0 NUM o o e 337
43.0 NUM2 . o 338
44.0 NUMS . o o e o 339
45.0 NUMITS o o o o o o 340
46.0 ONECHR (BASIC=PLUS=2)« . i it it 341
47.0 PLACES . » o o o 342
48.0 POS . o o 345
49.0 PRODS . . o o oo e 347
50.0 QUOS . o o o e e e 349
51.0 RADS . o o o 351
52.0 RCTRLC . « o o o oo e 352
53.0 RCTRLO . . o o o oo o e e 353

vii

54.0 REAL. oL e 354

55.0 RECOUNT . . . o o o o s, 355
56.0 RIGHTS o 356
57.0 RND. . o o o, 357
58.0 SEGS. 358
59.0 SGN . . . o i 359
60.0 SIN . . . 360
61.0 SPACES . . . o o 361
62.0 SQR, 362
63.0 STATUS . . o o o 363
64.0 STRS. . o o 365
65.0 STRINGS . . . o o o o 366
66.0 SUMS o 367
67.0 SWAP% 368
68.0 SYS . . . 369
69.0 TAB 371
70.0 TAN 372
71.0 TIME. . . . 373
720 TIMES 375
73.0 TRMS$ 376
74.0 VALo 377
75.0 VAL% . o oo 378
76.0 XLATE . . o o . o 379

PART VI - BASIC-PLUS-2 Debugger Commands

1.0 BREAK (BASIC—PLUS-2) o 383
2.0 CONTINUE (BASIC-PLUS-2) 385
3.0 CORE (BASIC-PLUS-2). s 386
4.0 ERL (BASIC-PLUS-2). o 387
5.0 ERN(BASIC-PLUS-2) e 388
6.0 ERR (BASIC-PLUS-2)o 389
7.0 EXIT (BASIC-PLUS-2) oo 390
8.0 FREE (BASIC-PLUS-2) o 391
9.0 /0 BUFFER (BASIC-PLUS-2). 392
10.0 LET (BASIC-PLUS-2). 393
11.0 PRINT (BASIC-PLUS-2) 395
12.0 RECOUNT (BASIC-PLUS-2) 396
13.0 REDIRECT (BASIC-PLUS-2). 397
14.0 STATUS (BASIC-PLUS-2).« .« ... 398
15.0 STEP (BASIC-PLUS-2)« . . .o 400
16.0 STRING (BASIC-PLUS-2). 401
17.0 TRACE (BASIC-PLUS-2)o 402
18.0 UNBREAK (BASIC-PLUS-2). oo 403
19.0 UNTRACE (BASIC-PLUS-2). 405

Appendix A Reserved BASIC Keywords
Appendix B Program and Subprogram Coding Conventions

Index

viii

Tables

QO NG WK =

NN MNMMNNMNNRNN = = e e s
ONOUVRARWN=OWRENOOUA,WN-—=O

Keyword Space Requirementso 4
BASIC Data Types o v v v o e e 12
Numbers in E Notation. oo 16
Predefined Constants. o .o 23
Arithmetic Operators. o . . e e e 30
Result Data Types in BASIC Expressions 32
VAX—11 BASIC Result Data Types « . « o o o o o o . 32
Result Data Types for DECIMAL Data 33
Numeric Relational Operators. ... 35
String Relational Operators 37
Logical Operatorso ... 38
Truth Tables e e 38
Numeric Operator Precedence « 47
BASIC-PLUS-2 Editing Mode Commands. 60
ODL Files o e e e .. . 81
VAX—11 BASIC COMPILE and SET Command Qualifiers 84
BASIC—PLUS—2 Command Qualifiers. 90
RMS Libraries o e e e e e e e e 101
VAX—11 BASIC Parameter Passing Mechanisms 132
BASIC—PLUS-2 Parameter Passing Mechanisms 133
FILL ltem Formats and Storage Allocations 141
EDIT$ Values o o o e e e 311
MAGTAPE Function Codes« . .« o oo 332
Performing MAGTAPE Functions in VAX-11 BASIC 333
Rounding and Truncation of 123456.654321 344
VAX=11 BASIC STATUS Bits« .« .. 364
VAX=11 BASIC Subset of RSTS/ESYS Calls 369
TIME Function Valueso 374

To the Reader

This manual is part of the BASIC documentation set. This set of manuals was designed to let you learn
and use BASIC regardless of your prior experience with computers. The documentation set includes:

For the beginner:

e Introduction to BASIC

® BASIC for Beginners

e More BASIC for Beginners

For all systems:

® BASIC User’s Guide
® BASIC Reference Manual
® BASIC Pocket Reference Guide

For specific systems:

® BASIC on RSTS/E Systems
® BASIC on RSX—11M/M—-PLUS Systems
® BASIC on VAX/VMS Systems

For the system manager:

® BASIC—PLUS—2 RSTS/E Installation Guide and Release Notes
® BASIC—PLUS=2 RSX—11M/M—=PLUS Installation Guide and Release Notes
® VAX—11 BASIC Installation Guide and Release Notes

For the beginner, Introduction to BASIC explains the fundamentals of the BASIC language and shows
how to use BASIC to solve programming problems. BASIC for Beginners and More BASIC for
Beginners lead the reader step-by-step through planning and writing several practical programs that
teach BASIC programming techniques. In addition, the first chapter of the system-specific user’s guide
tells you how to log on to your computer system, create and execute programs, and do simple file
operations such as printing, typing, and deleting files.

Xi

For programmers who are more familiar with BASIC, the BASIC User’s Guide and the system-specific
user’s guides include a complete explanation of BASIC and how to use it on your system. If you need
information on a particular feature or statement, the BASIC Reference Manual describes the format of
each BASIC command or keyword individually.

The BASIC documentation set has several new features that let you find information quickly and
easily. Each manual has its own index (with instructions on its use) and the BASIC Reference Manual
has a master index to the entire documentation set. For quick reference the BASIC Pocket Reference
Cuide provides a brief explanation of all BASIC commands and functions. Similar information is also
available at the computer terminal from the BASIC HELP facility.

The following pages describe the function of this particular manual. We welcome your comments
and encourage you to use the Reader’'s Comments Form provided at the back of this book.

Document Objectives

This manual describes the language elements and syntax of Version 2 of VAX-11 BASIC and
BASIC-PLUS-2. The term BASIC is used generically in this manual to refer to both VAX—11 BASIC
and BASIC-PLUS-2. The term VAX—11 BASIC refers specifically to VAX—11 BASIC as implemented on
VAX/VMS systems. BASIC-PLUS-2 refers specifically to BASIC-PLUS-2 as implemented on RSTS/E,
RSX—11M, and RSX—11M-PLUS systems.

Note

For your convenience, examples, formats, or rules specific to VAX=11 BASIC,
BASIC-PLUS-2, or BASIC—PLUS—2 on RSTS/E or RSX—11M/M—-PLUS are identified by
a marginal symbol:

indicates VAX—11 BASIC only.
indicates BASIC—PLUS—2 only.
indicates BASIC—PLUS—2 on RSTS/E systems.

RsX || indicates BASIC-PLUS-2 on RSX—11M/M—PLUS systems.

Intended Audience

This manual should be used by programmers familiar with computer concepts and the BASIC lan-
guage. It is a reference manual to be used in conjunction with the BASIC user’s guides.

Document Structure

This manual consists of six parts, two appendixes, and a master index to the BASIC documentation
set. With the exception of Part |, BASIC language elements are arranged in alphabetical order within
each part; each language element begins on a separate page. A sample format page is included on
page Xiv.

Part | Describes BASIC program elements and structure.

Part Il Describes BASIC compiler commands.

Xii

Part Describes BASIC compiler directives.

Part IV Describes BASIC statements.
Part V Describes BASIC functions.
Part VI Describes BASIC-PLUS—2 debugger commands.

Append‘ix A Lists reserved keywords.

Appendix B Summarizes program and subprogram coding conventions.

This manual also includes three tabbed dividers for convenient reference:
® The first divider summarizes the conventions used in this manual.
® The second divider lists most BASIC keywords by function.

® The third divider precedes the Master Index and describes its use.

Xiii

Sample Format Page

ENTRY NAME

1.0 ENTRY NAME

Function

Describes the entry’s function or effect.
Format

A format shows the syntax of a language element. When you have a choice of formats, the
formats are named for clarity. When a format is named General, it applies to both VAX—11
BASIC and BASIC-PLUS-2. Format components are explained in syntax and general rules.
When a language element has more than one format, formats are referred to by name.
Some formats are divided into two parts. The first part, in the top portion of the box, shows
the general elements and order of the format.

The second part of the format, in the lower portion of the box, shows the components
and order of the individual elements in the general format.

Syntax Rules

Syntax rules tell you how to order format elements to form clauses or statements. They also
impose restrictions or relax restrictions implied by the format.

General Rules

General rules define the semantics of the entry and the entry’s effect on program execution or
compilation.

Examples

This section presents one or more sample program lines. All examples work for both VAX—11 BASIC
and BASIC-PLUS-2 unless otherwise noted.

Xiv

Conventions

Formats present the correct syntax for writing BASIC source code. You must order syntax elements as
shown in the format unless the syntax rules indicate otherwise.

Syntax formats consist of BASIC keywords, metalanguage mnemonics, and punctuation symbols.
Metalanguage mnemonics are symbolic derivations of BASIC objects or structures. The tabbed
divider that follows this section lists the most frequently used mnemonics and their meanings, as well
as the most frequently used punctuation symbols.

Note

BASIC keywords are always capitalized in this manual and must be spelled exactly as
shown. Mnemonics are in lowercase letters in formats and are italicized in the syntax
and general rules.

Some metalanguage mnemonics are derived directly from BASIC keywords. For example:

® Map From MAP
e Com From COMMON
® Func From FUNCTION
® Def From DEF
® Sub From SUB

Others are abbreviated forms of words. For example:

® Vbl For variable

® Unsubs For unsubscripted
® Subs For subscripted

® Str For string

® Const For constant

® Exp For expression

® Nam For name

¢ Cond For conditional

® Int For integer

® File-spec For file-specification

e Data-type For data-type

Most mnemonics used in formats are combinations of mnemonics. For example:

® Const-nam Is a constant name.
® Sub-nam Is the name of a SUB subprogram.
® Unsubs-vbl Is an unsubscripted variable. (continued on next page)

XV

® Int-exp Is an integer expression.
® Cond-exp Is a conditional expression.

® Str-unsubs-vbl Is a string unsubscripted variable.

Mnemonics are combined in this way to indicate exactly what type of object or structure BASIC
expects. Some BASIC statements, for example, allow you to specify any type of variable (string or
numeric) in the format, while others allow only a numeric variable (integer or floating-point), a string
variable, an integer variable, or a floating-point variable.

Thus, the uncombined form of the variable mnemonic (vb/) in a format means that you can use any
type of variable (string or numeric). A combined variable mnemonic (such as str-vbl, num-vbl, or
int-vbl) in a format means that you can specify only a particular type of variable.

Within formats, mnemonics are either simple or complex. Simple mnemonics identify a format
element (such as an expression, a variable, or a name) that needs no further definition. For example:

EXTERNAL data-type CONSTANT const-nam,... “

The mnemonics in this format need no further definition. The EXTERNAL keyword must be followed
by a data-type, the CONSTANT keyword, and then a const-nam. The comma and ellipsis (...), as
defined in the Punctuation Symbols Table, indicate that you can specify more than one const-nam.
The data-type mnemonic is defined in the Mnemonics Table as a BASIC data-type keyword, and
const-nam is defined as a constant name. Restrictions to the use of data-type keywords in the
EXTERNAL statement are specified in the syntax rules.

Complex mnemonics identify a format element (such as a parameter passing mechanism or a state-
ment clause) that has more than one component. Complex mnemonics are further defined in the
lower portion of the format box by simple mnemonics. For example:

Format

Variables

DECLARE data-type decl-item [, [data-type] decl-item]...
DEF Functions

DECLARE data-type FUNCTION { def-nam [([def-param 1,...)] }....
Named Constants

DECLARE data-type CONSTANT { const-nam = const },...

decl-item: unsubs-vbl-nam
array-nam (int-const,...)

def-param: [data-type]

Xvi

When you look at the upper portion of this format, you can see that a data-type keyword must follow
the DECLARE statement and that a decl-item must follow the data-type keyword. Decl-item is a
complex mnemonic that is then further defined in the lower portion of the box. There you can see
that a decl-item can be a simple variable name or an array name followed by parentheses and integer
constants separated by parentheses. The portion of the upper format in brackets indicates that you can
specify another data-type keyword and another array name or simple variable name. The comma and
ellipsis (...), as defined on the tabbed divider in this section, indicate that you can continue adding
data-type keywords and array names or simple variable names.

This type of format unfolds the syntax of BASIC language elements and indicates the type of element
BASIC expects to receive.

Note

In most cases, BASIC signals an error if the syntax element does not exactly match the
indicated format. In other instances, particularly with numeric elements, BASIC con-
verts the numeric element you specify to the type of numeric element it expects to
receive. These instances are noted in the syntax rules.

Multiple occurrences of mnemonics in a format are numbered to prevent confusion. Vbi3, for exam-
ple, is the third unique variable in a general format and is referred to as vb/3 in the syntax and general
rules.

The most frequently used punctuation symbols and metalanguage mnemonics are listed and
described on the first tabbed divider in this manual. Less frequently used mnemonics and most
complex mnemonics are defined as they occur in syntax formats.

Please use the Reader's Comments Form in the back of this book to report errors or to make sugges-
tions for future documentation releases.

XVil

Conventions

Syntax Mnemonics

Mnemonic

exp
vbl

unsubs

subs

array
const

lit

num
real
int
str

cond

log
rel
lex

target

lin-num
label

item

nam
com

def

func

map

sub

chnl
data-type
file-spec

file-nam

Definition

An expression
A variable

Unsubscripted; used with the variable mnemonic to indicate a simple variable, as opposed to an array
element

Subscripted; used with the variable mnemonic to indicate an array element; the element’s position in the array
is specified by subscripts enclosed in parentheses and separated by commas

An array; syntax formats indicate whether you can specify bounds and dimensions, or just dimensions
A constant value

A literal value, in quotation marks; a literal is always a constant, but a constant may be named, so constants
are not always literals

A numeric value

A floating-point value
An integer value

A character string

Conditional; used with the expression mnemonic to indicate that an expression can be either logical or
relational

Logical; used with the expression mnemonic to indicate a logical expression
Relational; used with the expression mnemonic to indicate a relational expression
Lexical; used to indicate a component of a compiler directive

The target point of a branch statement; used to indicate that the target point can be either a program line
number or a statement label

A program line number
An alphanumeric statement label

Allowable BASIC objects, such as variables, data types, and parameters; allowable objects are defined in
formats as they occur

Name; indicates the declaration of a name or the name of a BASIC structure, such as a SUB subprogram
Specific to a COMMON

Specific to a DEF

Specific to a FUNCTION subprogram

Specific to a MAP

Specific to a SUB subprogram

An 1/0 channel associated with a file

A data-type keyword

A file-specification

A file name

Punctuation Symbols

Symbols

Definition

[] Brackets enclose an optional portion of a format. Brackets around vertically stacked entries indicate that you
can select one of the enclosed elements. You must include all punctuation as it appears in the brackets.

{} Braces enclose a mandatory portion of a general format. Braces around vertically stacked entries indicate
that you must choose one of the enclosed elements. Braces also group portions of a format as a unit. You
must include all punctuation as it appears in the braces.

An ellipsis indicates that the immediately preceding language element can be repeated. An ellipsis following
a format unit enclosed in brackets or braces means that you can repeat the entire unit. If repeated elements
or format units must be separated by commas, the ellipsis is preceded by a comma {,...).

Definitions

In this manual, the following definitions apply:

BASIC

BASIC-PLUS-2

Cannot

Cursor

or
cursor position
Must
Program module
. Subprogram

Subroutine

VAX-11 BASIC

The term BASIC refers to Version 2 of both VAX-—11 BASIC and PDP-—11
BASIC-PLUS-2.

The term BASIC-PLUS-2 refers specifically to Version 2 of PDP-11
BASIC-PLUS-2 as implemented on RSTS/E, RSX—11M, and RSX-11M-PLUS
systems.

Cannot indicates than an operation cannot be performed and that an attempt to
perform the operation causes BASIC to signal an error.

Cursor or cursor position refers to a terminal’s print mechanism. It can be the
flashing cursor on a video display terminal or the print head on a hard-copy
terminal.

Must indicates that an operation must be performed and that failure to perform the
specified operation causes BASIC to signal an error.

A program module is a BASIC main program, a SUB subprogram, or a FUNCTION
subprogram.

A separately compiled program module that must be linked or task-built with the
main program.

A subroutine is a block of code accessed by a GOSUB or ON GOSUB statement. It
is always in the same program module as the statement that accesses it.

The term VAX—11 BASIC refers specifically to Version 2 of VAX—11 BASIC as
implemented on VAX/VMS systems.

Functional List of BASIC Keywords

Arrays

DET
DIMENSION
MAT

MAT INPUT
MAT LINPUT
MAT PRINT
MAT READ
NUM

NUM2

Data Conversion

ASCII
CHANGE
CHRS$
NUM$
NUM1$
STR$
VAL
VAL%

Data Definition

COMMON
DECLARE
DIMENSION
MAP

MAP DYNAMIC
MOVE

RECORD
REMAP

Data Formatting

FORMAT$
PRINT USING

Data Typing

COMMON
DECLARE
DEF
DIMENSION
EXTERNAL
FUNCTION
MAP
OPTION
SUB

Date and Time Conversion

DATE$
TIME
TIMES

Error Handling

ERL
ERN$
ERR
ERT$

ON ERROR GO BACK
ON ERROR GOTO
ON ERROR GOTO 0

RESUME

Function Definition

DEF

END DEF

END FUNCTION
EXIT DEF

EXIT FUNCTION
EXTERNAL
FUNCTION

1/0 to Files

CLOSE
DELETE
FIND
FREE

GET
INPUT #
INPUT LINE #
KILL
LINPUT #
MAR
MARGIN
MOVE
NAME AS
OPEN
PRINT #
PUT #
RECOUNT
RESTORE #
SCRATCH
UNLOCK
UPDATE

1/0 to Terminals

CCPOS
CTRLC
ECHO
INPUT
INPUT LINE
LINPUT
MAR

NOECHO
PRINT USING
RCTRLC
RCTRLO
RECOUNT
TAB

Numbers

ABS
ATN
COMP%
cOsS
DECIMAL
EXP

FIX

INT

INTEGER
LOG

LOG10

MAG
RANDOMIZE
REAL

RND

SGN

SIN

SQR

SWAP%

TAN

Program Control

END

EXIT LOOP
FOR
GOSUB
GOTO

IF

ITERATE
ON GOTO
RETURN
SELECT
SLEEP
STOP
UNLESS
UNTIL
WAIT
WHILE

Program Segmentation

CALL
CHAIN

END FUNCTION

END SUB

EXIT FUNCTION
EXIT SUB
EXTERNAL
FUNCTION
LOC

SUB

Strings

EDIT$
FORMAT$
INSTR
LEFT$
LEN

LSET
MID$
POS
RIGHT$
RSET
SEG$
SPACE$
STRING$
TRM$
XLATE

String Arithmetic

DIF$
PLACE$
PROD$
QUO$
SUM$

Value Assignment

DATA
LET

LSET
READ
RESTORE
RSET

PART I
Program Elements
and Structure

1.0 Elements of a BASIC Program

A BASIC program is a series of program lines that contain instructions for the BASIC compiler. These
instructions are in the form of BASIC statements. Program lines contain the BASIC keywords, opera-
tors, and operands that make up a BASIC program.

The first line of a BASIC program must begin with a line number. The program lines that follow may
contain:

e Line numbers or labels

¢ Statements

e Optional compiler directives
¢ Optional comment fields

¢ Line terminator (carriage return)

1.1 Line Numbers

Every BASIC statement must be associated with a line number. Thus, the first element in a BASIC
program must be a line number. A line number must be an integer between 1 and 32767, inclusive.
A space or tab terminates the line number. Embedded spaces, tabs, and commas within line numbers
are invalid.

A line number followed by a carriage return does not constitute a BASIC program line. A program line
must contain a statement or a comment field. Comment fields are discussed in Section 2.1. A new
line number or a carriage return terminates a BASIC program line.

A program line can contain any number of text lines; however, a text line cannot exceed 255

characters in VAX—11 BASIC and BASIC-PLUS—2 on RSTS/E systems, and 132 characters in
BASIC—PLUS-2 on RSX—11M/M—-PLUS systems.

February 1984 BASIC Reference Manual 1

The BASIC language uses line numbers to:
e Indicate the order of statement execution
e Provide control points for branching

¢ Help in debugging and updating programs
e Find the location of run-time errors

e Resume processing after an error has been handled

Therefore, each line number must be unique. BASIC ignores leading spaces, tabs, and zeros in line
numbers.

1.2 Labels

A label is a 1- to 31—character name that immediately precedes a statement. It may immediately
follow a line number. The label logically identifies a statement or block of statements. The label name
must conform to the rules for naming variables, described in Section 6.1. The label name must be
separated from the statement it labels with a colon (:). For example:

100 Yes_.routine: PRINT "Your answer is YES."

The colon is not part of the label name. It tells BASIC that the label is being defined rather than
referenced. Consequently, the colon is not allowed when you use a label to reference a statement.
For example:

200 GOTO Yes_.routine

The BASIC language uses labels to:

® Provide control points for branching
e Help in debugging programs

¢ Help in maintaining and updating programs
You can reference a label anywhere you can reference a line number, with three exceptions:

® You cannot compare the value returned by the ERL function (the line number associated with the
program line where the last error occurred) with a label.

® You cannot use the RESUME statement to reference a label.

* You cannot reference a label in an IF-THEN-ELSE statement without using the keyword GOTO or
GO TO. You can use the implied GOTO form only to reference a line number. For example:

100 IF A% = B%
THEN 1000
ELSE 1050

200 IF A$ = "YES"

THEN GOTO Yes
ELSE GOTO No

2 BASIC Reference Manual

Because the first statement references a line number, the GOTO keyword is not required; the second
statement references a label, so the GOTO keyword is required.

1.3 Statements

A BASIC statement consists of a statement keyword and optional operators and operands. For
example:

400 LET A% = 534% + (SUMY% - DIF%L)
PRINT A%

The first statement assigns a value to the integer variable A%. The PRINT statement causes BASIC to
display the value of A% on your terminal.

A statement is either executable or nonexecutable:

e Executable statements perform operations (for example, PRINT, GOTO, and READ).

e Nonexecutable statements describe the characteristics and arrangement of data, specify usage infor-
mation, and serve as comments in the source program (for example, DATA, DECLARE, and REM).

BASIC can accept and process one statement on a line of text, several statements on a line of text,
multiple statements on multiple lines of text, and single statements continued over several lines of
text. Each line of program text is associated with the last specified line number.

Multi-statement and continuation lines are discussed in Sections 1.3.2 and 1.3.3.

1.3.1 Keywords

A keyword is a reserved element of the BASIC language. Every statement except LET and empty
statements must begin with a keyword. BASIC uses keywords to:

¢ Define data and user identifiers

e Perform operations
® Invoke built-in functions

Note

Keywords are reserved words and cannot be used as variable names or as names for
MAP or COMMON areas.

Keywords cannot be used in any context other than as BASIC keywords. STRING$ = ““YES”, for
example, is invalid because STRING$ is a reserved BASIC keyword. Appendix A in this manual
contains a list of BASIC reserved keywords.

A BASIC keyword cannot have embedded spaces and cannot be split across lines of text. There must
be a space, tab, or special character such as a comma between the keyword and any other variable or
operator.

BASIC Reference Manual 3

Some keywords use two words. In this case, their spacing requirements vary, as shown in Table 1.

Table 1: Keyword Space Requirements

Optional Space | Mandatory Space No Space
GO SuB BY DESC FNEND
GO TO BY REF FNEXIT
ON ERROR | BY VALUE FUNCTIONEND
END DEF FUNCTIONEXIT
END FUNCTION NOECHO
END GROUP NOMARGIN
END IF SUBEND
END RECORD SUBEXIT
END SELECT
END SUB
EXIT DEF
EXIT FUNCTION
EXIT SUB
INPUT LINE
MAP DYNAMIC
MAT INPUT
MAT LINPUT
MAT PRINT
MAT READ

1.3.2 Single-Statement Lines and Continued Statements

A single-statement line consists of one statement cn one numbered line or one statement continued
over two or more text lines. For example:

100 PRINT B #* C / 12

This single-statement line has a line number, keyword (PRINT), operators (*, /), and operands (B, C
and 12).

’

You can have a single statement span several text lines by typing an ampersand (&) and a carriage
return. For example:
100

OPEN "SAMPLE.DAT" AS FILE 2%, &GD

SEQUENTIAL VARIABLE, &G
MAP ABC

The ampersand must come immediately before the carriage return in VAX—11 BASIC. BASIC—PLUS—2
ignores spaces or tabs that follow the ampersand and precede the carriage return. For compatibility,
DIGITAL recommends that you type the carriage return immediately after the ampersand.

The ampersand continuation character may be used but is not required for continued REM state-
ments. The following example is valid:

100 REM This is a remark

And this is also a remark

4 BASIC Reference Manual

You can continue any BASIC statement, but you cannot continue a string literal or BASIC keyword.
For example, BASIC returns the error message ““Unterminated string literal’” if you try to print the
following:

100 PRINT "FEE-FIE- &
FOE-FUM"

This example is valid:

200 PRINT "FEE-"3 &
"FIE-"3 &
"FOE-"j &
IIFUMII

A more efficient way to continue string literals is to use the string concatenation operator:

100 PRINT “FEE-" &
+ "FIE-" &
+ "FOE-" &
+ IlFUMII

BASIC concatenates the four string literals at compile time and stores them as one string. When the
PRINT statement executes, BASIC displays the one concatenated string literal rather than four sepa-
rate string literals, thereby causing your program to execute faster and more efficiently.

Continued statements do not have line numbers, although the compiler counts and numbers them as
sublines.

1.3.3 Multi-Statement Lines

Multi-statement lines contain several statements on one line of text or multiple statements on separate
lines of text. All the statements on a multi-statement line are associated with a single line number.

Multiple statements on one line of text must be separated by backslashes (\). For example:

400 PRINT A \ PRINT ¥ \ PRINT G

Because all statements are on the same program line, any reference to line number 400 refers to all
three statements and execution begins with the first statement on the line. That is, BASIC cannot
execute the second statement without executing the first statement.

A statement that unconditionally transfers control to another program line should always be the last
statement on a multi-statement line. Otherwise, the statements that follow the statement transferring

control will never execute. The following program line, for example, will execute, but it is not
recommended:

200 PRINT A \ GOTO 410 \ PRINT B

BASIC prints the value of A and then branches to line 410. The statement PRINT B will never execute.

BASIC Reference Manual 5

You can also write a multi-statement program line that associates all statements with a single line
number by ending each statement with an ampersand (&) and a carriage return and preceding the
next statement with a backslash. For example:

400 PRINT A &
\ PRINT U &
\ PRINT G

Because programs written in this format tend to be cluttered and hard to read, BASIC allows you to
associate multiple statements with a line number by placing each statement on a separate line without
using the ampersand or backslash. This format requires only a space or tab at the beginning of each
new line of text. BASIC assumes that such an unnumbered line of text is either a new statement or an
IF statement clause. For example:

400 PRINT A
PRINT B
PRINT "FINISHED"

In this example, each line of text begins with a BASIC statement and each statement is associated with
line number 400.

BASIC also recognizes IF statement keywords on a new line of text and associates such keywords with
the preceding IF statement. For example:

100 IF (A% = "YES") OR (A% = "Y")
THEN PRINT "You tvyped YES"
ELSE PRINT "You tvyped NO"
STOP
END IF

The BASIC compiler listing file numbers the lines associated with line number 100 as they occur. The
VAX—11 BASIC listing file looks like this:

1 100 IF (A% = "YES") OR (A% = "Y")
2 THEN PRINT "You tveped YES"

3 ELSE PRINT "You tveped NO®

a STOP

S END IF

The BASIC-PLUS-2 listing file looks like this:

00001 100 IF (A% = "YES") OR (A% = "¥")
Q0002 THEN PRINT "You tveped YES"
00003 ELSE PRINT "You tvped NO"
00004 STOP

00005 END IF

Each statement has a number that indicates its position in the line. The BASIC compiler counts the
statements in a multi-statement line to locate compile-time errors. You cannot use statement numbers
as targets of branch statements. Targets of branch statements such as GOTO must be a line number or
a label.

6 BASIC Reference Manual

You can use any BASIC statement in a multi-statement line. However, a REM or DATA statement
must be the last statement on a multi-statement line. This is because the compiler:

e Ignores all text following a REM keyword until it reaches a new line number.

e Treats all text following a DATA keyword as data until it reaches a new line number; thus, every
DATA statement in your program has to have its own line number.

Because a leading space or tab not followed by a line number implies a new statement in a multi-
statement line, compiler commands and immediate mode statements cannot be preceded by a space
or tab. If you enter a compiler command or immediate mode statement, you cannot add more
continuation lines to the last program line. If you attempt to do so, BASIC signals the error ““unknown
command input”’.

1.4 Compiler Directives

Compiler directives are instructions in a program that tell BASIC to perform certain operations as it
compiles the program. With compiler directives, you can:

e Place program titles and subtitles in the header that appears on each page of the listing file
e Place a program version identification string in both the listing file and object module

e Start or stop the accumulation of listing information for selected parts of a program

e Start or stop the accumulation of cross-reference information for selected parts of a program
e Include BASIC code from another source file

e Conditionally compile parts of a program

e Terminate compilation

e Include CDD record definitions in a BASIC program (VAX-11 BASIC only)

All compiler directives:

® Must begin with a percent sign

e Can be preceded by an optional line number

e Must be the only text on the line (except for %IF—%THEN—-%ELSE—%END—%IF)

® Must be preceded by a space, tab, or line number

¢ Cannot appear within a quoted string

See the BASIC User’s Guide and Part Il in this manual for more information on compiler directives.

1.5 Line Terminators

In the BASIC environment, a carriage return/line feed combination (BD) followed by an optional
space or tab and a new line number ends a BASIC program line. An ampersand followed by a
carriage return ends a line of text but not the program line. All statements between the first line
number and the next line number are associated with the first line number.

BASIC Reference Manual 7

1.6 Lexical Order

Lexical order refers to the order in which BASIC compiles statements in a program. In general terms,
BASIC compiles program lines in sequential order from the lowest to the highest line number. Thus,
statement A precedes statement B if the line number with which statement A is associated is lower
than the line number with which statement B is associated. If both statements are associated with the
same line number, statement A precedes statement B only if it physically precedes statement B or
appears to the left of statement B. BASIC processes statements on a line of text from left to right and
lines of text from top to bottom.

Some BASIC statements, such as comments and MAP declarations, are nonexecutable. If program
control passes to a nonexecutable statement, BASIC executes the first statement that lexically follows
the nonexecutable statement.

2.0 Program Documentation

Documentation clarifies and explains source program structure. You can provide such explanations
with:
e Comment fields

® REM statements

2.1 Comment Fields

A comment field begins with an exclamation point (!) and ends with a carriage return. You supply text
after the exclamation point to document your program. BASIC does not execute text in a comment
field. For example:

100 I FOR loop to initialize list O
FOR I = 1 TO 10
Q(IY = 0 ! This is a comment
NEXT 1

I List now initialized
BASIC executes only the FOR loop. The comment fields, preceded by exclamation points, do not
execute.

Comment fields help make your program more readable and allow you to format your program into
readily visible logical blocks. They can also serve as target lines for GOTO and GOSUB statements:

10 !
! Square root Program
!
INPUT ‘Enter a number’3A
PRINT ‘SQR of ‘3A3’is ‘385QR(A)
!
! More sAauare roots?
!
INPUT ‘Tvype "Y¥" to continues a carriadge return to auit’iANSS$
GOTO 10 IF ANS% = ‘Y’
1
99 END

8 BASIC Reference Manual

You can also use an exclamation point to terminate a comment field, but this practice is not recom-
mended. Therefore, you should make sure that there are no exclamation points in the comment field
itself; otherwise, BASIC treats the text remaining on the line as source code.

Note

Comment fields in DATA statements are invalid; the compiler treats the comments as
additional data.

2.2 REM Statements

A REM statement begins with the REM keyword and ends when BASIC encounters a new line
number. The text you supply between the REM keyword and the next line number documents your
program. Like comment fields, REM statements do not affect program execution. BASIC ignores all
characters between the keyword REM and the next line number. Therefore, the REM statement can be
continued without the ampersand continuation character and should be the only statement on the
line or the last of several statements in a multi-statement line:

10 REM This is an example
20 A=5
B=10

REM A eauals 5
B eauals 10
30 PRINT A, B

The REM statement is nonexecutable. When you transfer control to the line number of a REM
statement, BASIC executes the next executable statement that lexically follows the referenced line.
For example:

10 REM #*#% Square root Prodram

20 INPUT ‘Enter a number’3A
PRINT ‘SQR of ‘§Ai‘is ‘iSQR(A)
INPUT ‘Type "Y" to continues, a carriade return to auit’5ANSS$
GOTO 10 IF ANS$ = ‘Y’

40 END

When the conditional GOTO statement in line 20 transfers program control to line 10, BASIC ignores
the REM comment on line 10 and continues program execution at line 20.

Note

Because BASIC treats all text between the REM statement and the next line number as
commentary, REM should be used very carefully in programs that follow the implied
continuation rules. Program statements intended for execution will not execute when
they are inside a REM statement. DIGITAL recommends the use of comment fields (!)
for program documentation in programs formatted with implied continuation lines.

BASIC Reference Manual 9

2.3 Empty Statements

Empty statements consist of a line number and an exclamation mark followed by optional text, a line
terminator and a new line number. For example:

100 !
I FOR loor to initialize list Q
|
200 FOR I = 1 TO 10
Q(I) = 0 ! This is a comment
NEXT I
300 !

I List is now initialized

Lines 100 and 300 are empty statements.

3.0 BASIC Character Set
BASIC uses the full ASCIl character set. This includes:

* The letters A through Z, both upper- and lowercase
e The digits O through 9

e Special characters

Appendix C in BASIC on VAX/VMS Systems, BASIC on RSX—11M/M—PLUS Systems, and BASIC on
RSTS/E Systems contains the full ASCII character set and character values.

The compiler:

¢ Does not distinguish between upper- and lowercase letters except in string literals or within a DATA
statement

® Does not process nonprinting characters unless they are part of a string literal

® Does not process characters in REM statements or comment fields

In string literals, BASIC processes:

® Lowercase letters as lowercase

® Nonprinting characters

The ASCII character NUL (ASCII code 0) and line terminators cannot appear in a string literal. Use the
CHRS$ function or explicit literal notation to use this character and terminators.

You can use nonprinting characters in your program, for example, in string constants, but to do so
you must use: 1) a predefined constant such as ESC and DEL, 2) the CHR$ function to specify an
ASCII value, or 3) explicit literal notation for character constants. See Section 5.4 in this manual for
more information on explicit literal notation. See the BASIC User’s Guide for more information on
predefined constants and the CHR$ function.

4.0 BASIC Data Types

All data in a BASIC program has a specific data type that determines how many bits of storage should
be considered as a unit and how the unit is to be interpreted and manipulated.

10 BASIC Reference Manual

VAX—11 BASIC recognizes five primary data types: integer, floating-point, character string, packed
decimal, and RFA. These types correspond to the BASIC generic data-type keywords:

* INTEGER
e REAL

¢ STRING
e DECIMAL
® RFA

BASIC—PLUS-2 recognizes four primary data types: integer, floating-point, character string, and RFA.
These types correspond to the BASIC generic data-type keywords:

¢ INTEGER
e REAL

¢ STRING
* RFA

Integer data are stored as binary values in a byte, a word, or a longword. These values correspond to
the BASIC data-type keywords:

* BYTE
e WORD
* LONG

Floating-point values are stored using a signed exponent and a binary fraction. VAX=11 BASIC allows
four floating-point formats: single, double, gfloat, and hfloat. These formats correspond to the BASIC
data-type keywords:

¢ SINGLE

e DOUBLE
o GFLOAT
e HFLOAT

BASIC-PLUS-2 allows only single and double floating-point formats. These formats correspond to the
BASIC data-type keywords:

e SINGLE
e DOUBLE

VAX-11 BASIC packed decimal data is stored in a string of bytes. Refer to Appendix C in BASIC on
VAX/VMS Systems for more information on the storage of packed decimal data.

Character data are strings of bytes containing ASCIl codes as binary data. The first character in the
string is stored in the first byte, the second character is stored in the second byte, and so on. VAX—11
BASIC allows up to 65535 characters for a STRING data element. BASIC-PLUS-2 allows up to 32767
characters.

BASIC Reference Manual 11

In addition to these data types, BASIC also recognizes a special RFA data type to provide information
about a Record File Address (RFA). A Record File Address consists of a block number within a file and
an offset into that block. An RFA uniquely identifies a record in a file. You can access RMS files of any
organization by Record File Address (RFA). This means that you specify the disk address of a record,
and RMS retrieves the record at that address. Accessing records by RFA is more efficient and faster
than other forms of random record access.

The RFA data type is unique and can be used only for:
® RFA operations (with the GETRFA function and GET and FIND statements)
® Assignments to other variables of the RFA data type

¢ Comparisons with other variables of the RFA data type using the equal to (=) or not equal to (<>)
relational operators

¢ Formal and actual parameters

e DEF and function results

You cannot use variables or constants of the RFA data type for any arithmetic operations. You cannot
declare a constant of the RFA data type.

The RFA data type requires six bytes of information: four bytes for the address of a disk block, and
two bytes for the offset into the disk block. See Chapter 9 in the BASIC User’s Guide for more
information on Record File Addresses and the RFA data type.

Table 2 lists BASIC data-type keywords and summarizes BASIC data types.
Table 2: BASIC Data Types

Precision
Data Type (decimal
Keyword* Size Range** digits)
INTEGER — specifies integer data
BYTE 8 bits —1281t0 +127 NA
WORD 16 bits —32768 to +32767 NA
LONG 32 bits 2147483648 to NA
+2147483647
REAL — specifies floating-point data
SINGLE 32 bits 2910 "to0 1.7 x 10™ 6
DOUBLE 64 bits 29«10 "t0 1.7+ 10" 16
GFLOAT 64 bits 561010 .9+ 10" 15
HFLOAT 128 bits 84 10" to .59+ 10" 33
DECIMAL(W,;s) Oto 16 bytes 110" t0 1+ 10" 31
STRING One character NA NA
per byte
RFA 6 bytes NA NA

* VAX=11 BASIC only data types are italicized.

™" Approximate for REAL and DECIMAL data types.

12 BASIC Reference Manual February 1984

For the VAX=11 BASIC only DECIMAL data type, you can specify the total number of digits (d) in the
data type and the number of digits to the right of the decimal point (s). For instance, DECIMAL(10,3)
specifies decimal data with a total of 10 digits, 3 of which are to the right of the decimal point.

In Table 2, REAL and INTEGER are generic data-type keywords that specify floating-point and integer
storage, respectively. If you use the REAL or INTEGER keywords to type data, the actual data type
(SINGLE, DOUBLE, GFLOAT or HFLOAT in VAX-11 BASIC, BYTE, WORD, or LONG) depends
on the current default. That is, if you do not explicitly type REAL and INTEGER data as SINGLE,
DOUBLE, BYTE, WORD, and so on, BASIC uses the current defaults for REAL and INTEGER.

You can specify data-type defaults in the BASIC environment with the SET and COMPILE commands
or in a program module with the OPTION statement. On VAX/VMS systems, you can also specify
data-type defaults from DCL level with the DCL BASIC command. You can also specify whether
program values are to be typed implicitly or explicitly. The following sections discuss data-type
defaults and implicit and explicit data typing.

4.1 Implicit Data Typing

You implicitly assign a data format to program values by adding a suffix to the variable name or
constant value or by specifying no suffix with the variable name or constant value:

e A dollar sign suffix ($) specifies STRING storage.
e A percent sign suffix (%) specifies INTEGER storage.

 No suffix character specifies storage of the default type, which may be INTEGER, REAL, or
DECIMAL (VAX—11 BASIC only).

Suffixes on variable names and program constants specify string, integer, or floating-point storage of
the default size. No suffix character implies that the value is of the default type (integer, floating-
point, or packed decimal in VAX-11 BASIC). With implicit data typing, the range and precision for
integer, floating-point, and packed decimal values (VAX—11 BASIC only) is determined by the current
default data type. The default data type is determined by the system default (REAL) or the data type set
for the BASIC environment with the SET or COMPILE commands. VAX—11 BASIC qualifiers are
described in Table 16. BASIC—PLUS-2 qualifiers are described in Table 17.

Note that if you compile your program with the /TYPE: EXPLICIT qualifier, you cannot type program
values implicitly. All program values must be explicitly assigned a data type in your program or
BASIC signals an error.

Good programming practice dictates that you do not mix implicit and explicit data typing in expres-
sions or in program units and that you do not rely extensively on implicit data typing. Explicit data
typing makes programs easier to understand and maintain because the data type of all program values
is explicitly spelled out in the program and is not as dependent upon compilation defaults that may
change.

4.2 Explicit Data Typing

Explicit data typing means that you use a declarative statement to specify the type, range and preci-
sion of your program values. Declarative statements associate attributes such as data type and value
with user identifiers. For example:

BASIC Reference Manual 13

100 DECLARE STRING CONSTANT ZIP_CODE = 03060
DECLARE STRING EMP_NAME ., DOUBLE WITH_TAX: SINGLE INT_RATE

The first DECLARE statement associates the constant value 03060 and the STRING data type with a
constant named ZIP_CODE. The second DECLARE statement associates the STRING data type with
EMP_NAME, the DOUBLE data type with WITH_TAX, and the SINGLE data type with INT_RATE.
No constant values are associated with user identifiers in the second DECLARE statement because
they are variable names.

With explicit data typing, each program variable within a program can have a different range and
precision. This gives you more control over your program. Because you can explicitly assign data
types to variables, constants, arrays, parameters, and functions, all integer data, for instance, does not
have to take the compilation defaults. Likewise, all floating-point data does not have to take the
compilation default because you can declare floating-point values as SINGLE or DOUBLE in
BASIC—PLUS-2 and as SINGLE, DOUBLE, GFLOAT, or HFLOAT in VAX—11 BASIC. See the BASIC
User’s Guide and the sections on these statements in this manual for more information on explicitly
typing data.

Using the REAL and INTEGER keywords to explicitly type program values allows you to write pro-
grams that are transportable across systems, since these data-type keywords specify that all floating-
point and integer data take the current default for REAL and INTEGER. The data type INTEGER, for
example, specifies only that the constant or variable is an integer. The actual subtype (BYTE, WORD,
or LONG) depends on the default set with the COMPILE or SET command, the VAX—11 BASIC DCL
BASIC command, or the OPTION statement.

You can also specify a particular data type size for values declared INTEGER or REAL with compila-
tion qualifiers. The qualifier /DOUBLE, for instance, specifies that all data typed REAL is to be treated
as double-precision data.

The /TYPE: EXPLICIT qualifier or OPTION TYPE =EXPLICIT statement allows you to specify that all
program data must be explicitly typed. Compiling a program with /TYPE: EXPLICIT or specifying
OPTION TYPE=EXPLICIT means that any program value not explicitly declared causes BASIC to
signal an error.

For new applications, DIGITAL recommends using BASIC’s explicit data typing features. See Chapter
5 of the BASIC User’s Guide for more information.

5.0. Constants

A constant is a numeric or character literal that does not change during program execution. A
constant can also be named and associated with a data type. BASIC allows the following types of
constants:

® Numeric
Floating-point
Integer
Packed decimal (VAX—11 BASIC only)

e String (ASCII characters enclosed in quotation marks)
A constant of any of the above data types can be named with the DECLARE CONSTANT statement.

You can then refer to the constant by name in your program. Refer to Section 5.3 for information on
naming constants.

14 BASIC Reference Manual

You can also use a special explicit literal notation to specify the value and data type of a numeric
literal. Explicit literal notation is discussed in Section 5.4.

If you do not specify a data type for a numeric constant with the DECLARE CONSTANT statement or
with explicit literal notation, the type and size of the constant is determined by the default REAL,
INTEGER, or (VAX—11 BASIC only) DECIMAL set:

e At installation (BASIC-PLUS-2 only)

e With the DCL BASIC command (VAX—11 BASIC only)
e With the SET command

e With the COMPILE command

e With the OPTION statement

BASIC also supplies predefined constants for ease in representing some ASCIl characters and mathe-
matical values.

The following sections discuss numeric and string constants, named constants, explicit literal nota-
tion, and predefined constants.

5.1 Numeric Constants

A numeric constant is a literal or named constant whose value never changes. In VAX-11 BASIC, a
numeric constant can be a floating-point number, an integer, or a packed decimal number. In
BASIC—PLUS-2, a numeric constant can be either a floating-point number or an integer. The type and
size of numeric constants are determined by the current default values, the data-type qualifiers
specified with the COMPILE command, the defaults set by the SET command, the data type specified
in a DECLARE CONSTANT or OPTION statement, or by explicit literal notation.

If you use a declarative statement to declare data type and name a numeric constant, the constant is
of the type and size specified in the statement. For example:

100 DECLARE BYTE CONSTANT AGE = 12

This example associates the numeric literal 12 and the BYTE data type with the user identifier AGE.
To specify a data type for unnamed numeric constants, you must use the explicit literal notation
format described in Section 5.4.

5.1.1 Floating-Point Constants

A floating-point constant is a literal or named constant with one or more decimal digits, either
positive or negative, an optional decimal point and an optional exponent (E notation). If the default
data type is INTEGER, a decimal point or an E is required or BASIC treats the literal as an INTEGER. In
VAX—11 BASIC, if the default data type is DECIMAL, an E is required or VAX—11 BASIC treats the
literal as a packed decimal value. The following, for example, are REAL literals:

Default type REAL:

-8.738
239.21E-6
.79

299

BASIC Reference Manual 15

Default type INTEGER:

-8.738
239.21E-6
.79

299E

Default type DECIMAL (VAX—11 BASIC only):

—8.738E
239.21E-6
.79E

299t

Very large and very small numbers can be represented in E (exponential) notation. This form of
mathematical shorthand uses the format:

+ number E £ n

where:

+ or— Is the number’s sign. The plus sign is optional, but negative numbers require a minus
sign.

number Is the number carried to a maximum of:
¢ 6 decimal places for SINGLE precision
® 16 decimal places for DOUBLE precision
¢ 15 decimal places for GFLOAT precision (VAX—11 BASIC only)
¢ 33 decimal places for HFLOAT precision (VAX—11 BASIC only)
E Represents the words ““times 10 to the power of."”

+ or— s the exponent’s sign. The plus sign is optional, but the minus sign is mandatory for
negative exponents.

n Is an integer constant (the power of 10). If an exponent sign is specified, n can be zero,
but not blank. If an exponent sign is not specified, n can be blank.

Table 3 compares numbers in standard and E notation.

Table 3: Numbers in E notation

Standard Notation E Notation

.0000001 .1E-06

1,000,000 JE+07
—10,000,000 —1E+08
100,000,000 TE+09
1,000,000,000,000 JE+13

16 BASIC Reference Manual

The range and precision of floating-point constants are determined by the current default data types or
the explicit data type used in the DECLARE CONSTANT statement. There are, though, limits to the
range allowed for numeric data types. Table 2 lists BASIC data types and ranges. BASIC signals the
fatal error ““floating point error or overflow’” when your program specifies a constant value outside of
the allowable range for a floating-point data type.

5.1.2 Integer Constants

An integer constant is a literal or named constant, either positive or negative, with no fractional digits
and an optional trailing percent sign (%). The percent sign is required for integer literals if the default
type is not INTEGER. For example:

Default type INTEGER:

81257
-3477
79

Default type REAL or (VAX—11 BASIC only) DECIMAL:

81257%
—3477%
79%

The range of allowable values for integer constants is determined by either the current default data
type or the explicit data type used in the DECLARE CONSTANT statement. Table 2 lists BASIC data
types and ranges. BASIC signals an error for a number outside the applicable range.

BASIC treats numeric literals as floating-point numbers unless:
e The default data type is INTEGER
¢ The literal has a % suffix

Thus, BASIC must convert numeric literals when assigning them to integer variables. This means that
your program runs somewhat slower than it would if integer values were explicitly declared. You can
prevent this conversion step by using percent signs for integer constants, numeric literal notation, or
named integer constants. :

Note

You cannot use percent signs in integer constants that appear in DATA statements. An
attempt to do so causes BASIC to signal ‘Data format error” (ERR=50).

5.1.3 Packed Decimal Constants (VAX-11 BASIC Only)

A packed decimal constant is a number, either positive or negative, that has a specified number of
digits and a specified decimal point position (scale). You specify the number of digits (d) and the
position of the decimal point (s) when you declare the constant as a DECIMAL. If the constant is not
declared, the number of digits and the position of the decimal are determined by the representation of
the constant. For example, when the default data type is DECIMAL, 1.234 is a DECIMAL(4,3) con-
stant, regardless of the default decimal size. Likewise, using explicit literal notation, “1.234”P is a

BASIC Reference Manual 17

DECIMAL(4,3) constant, regardless of the default data type and default DECIMAL size. Explicit literal
notation is described in Section 5.4. See the BASIC User’s Guide for more information on packed
decimal numbers.

5.2 String Constants

String constants are either string literals or named constants. A string literal is a series of characters
enclosed in string delimiters. Valid string delimiters are:

¢ Double quotation marks (‘‘text’’)

* Single quotation marks (‘text’)

You can embed double quotation marks within single quotation marks (‘this is a ““text” string’) and
vice versa (“this is a ‘text’ string”’). Note, however, that BASIC does not accept incorrectly paired
quotation marks and that only the outer quotation marks must be paired. The following character
strings, for example, are valid:

““The record number does not exist.”’
“I'm here!”
““The terminating ‘condition’ is equal to A$.”
“REPORT 543"
The following strings are not valid:
““Quotation marks do not match’
“No closing quotation mark

Characters in string constants can be letters, numbers, spaces, tabs, or any ASCII character except a
line terminator or NUL (ASCII code 0). If you need a string constant that contains a NUL, you should
use the NUL predefined constant in a compile-time constant expression or explicit literal notation.
See Section 5.4 in this manual for information on explicit literal notation and the BASIC User’s Guide
for more information on the NUL predefined constant.

BASIC determines the value of the string constant by scanning all its characters. For example, because
of the number of spaces between the delimiters and the characters, these two string constants are not
the same:

" END—OF-FILE REACHED
“END—OF—FILE REACHED”

BASIC stores every character between delimiters exactly as you type it into the source program,
including:

® Lowercase letters (a—z)
* Leading, trailing, and embedded spaces
e Tabs

e Special characters

18 BASIC Reference Manual

BASIC does not print the delimiting quotation marks when executing the program. That is, the value
of the string constant does not include the delimiting quotation marks. For example:

100 PRINT "END-OF-FILE REACHED"
!
!
!

200 END

RUNNH

END-OF-FILE REACHED

BASIC prints double or single quotation marks when they are enclosed in a second paired set:

100 PRINT ‘FAILURE CONDITION: "RECORD LENGTH"’
!
!
!

200 END

RUNNH

FAILURE CONDITION: "RECORD LENGTH"

5.3 Named Constants

BASIC allows you to name constants. You can assign a mnemonic name to a constant that is internal
to your program and refer to the constant by name throughout the program. You can also name a
constant that is external to your program and refer to it by name throughout your program. This
naming feature is useful for the following reasons:

e If a commonly-used constant must be changed, you need to make only one change in your
program.

e A logically named constant makes your program easier to understand.

You can use named constants anywhere you can use a constant, for example, to specify the number
of elements in an array.

You cannot change the value of an explicitly named constant during program execution. To change
the value of a constant, you must change the program statement that names the constant and declares
its value and then recompile the program.

5.3.1 Naming Constants Within a Program Unit

You name constants within a program unit with the DECLARE statement. For example:

100 DECLARE DOUBLE CONSTANT Preferred_rate = 147
DECLARE SINGLE CONSTANT Normal_rate = 162
DECLARE DOUBLE CONSTANT Risky_rate = ,178
1
!
1
500 New_hbal = Old_bal % (1 + Preferred_rate) "Years_rarment

BASIC Reference Manual 19

When interest rates change, only three lines have to be changed rather than every line that contains
an interest rate constant.

Constant names must conform to the rules for naming internal, explicitly declared variables listed in
Section 6.1. No constant name can have embedded spaces.

The value associated with a named constant can be a compile-time expression as well as a literal
value. For example:

100 DECLARE STRING CONSTANT Condrats = &
L g +" + LF + CR + R
"{ Condratulations! i" + CR + CR + &
T e o o e e e —— +0
]
!
!

500 PRINT Consdrats

!
!
!
1000 PRINT Condrats

Named constants can save you programming time (since you don’t have to retype the congratulations
box every time you want to display it) and execution time (since the named constant is known at
compile time).

Allowable operators in DECLARE CONSTANT expressions include all valid arithmetic, relational, and
logical operators except exponentiation. You cannot use built-in functions in DECLARE CONSTANT
expressions.

BASIC-PLUS-2 allows you to name floating-point, integer, and string constants, but floating-point
constants cannot be named as expressions. Only STRING and INTEGER constants can be named as
expressions in DECLARE CONSTANT statements. VAX—11 BASIC allows constants of all data types to
be named as expressions. For example:

100 DECLARE DOUBLE CONSTANT &
MIN_VALUE = 0, &
MAX_VALUE = PI/Z

This example is valid only in VAX=11 BASIC.

Note that you can specify only one data type in a DECLARE CONSTANT statement. To declare a
constant of a different data type, you must use a second DECLARE CONSTANT statement.

5.3.2 Naming Constants External to a Program Unit

To declare constants outside the program unit, use the EXTERNAL statement. For example:

200 EXTERNAL LONG CONSTANT S55%_NORMAL
EXTERNAL WORD CONSTANT IS.S5UC

The first line declares the VAX/VMS status code SS$_NORMAL to be an external LONG constant.
The second line declares 1S.SUC, a success code, to be an external WORD constant. Note that
VAX—11 BASIC allows external BYTE, WORD, LONG, and SINGLE constants, while BASIC—PLUS-2
allows only external WORD constants. The linker or task builder supplies the values for the constants
specified in EXTERNAL statements.

20 BASIC Reference Manual

External constant names cannot exceed six characters in BASIC-PLUS-2 and 31 characters in
VAX—11 BASIC and must conform to the rules for naming external variables listed in Section 6.1. No
constant name can have embedded spaces.

The types of external constants you can refer to vary from system to system. In VAX—11 BASIC, the
named constant might be a system status code or a global constant declared in a VAX—11 MACRO or
VAX—11 BLISS program. In BASIC-PLUS-2, the named constant might be a global constant declared
in a MACRO-11 program or an RMS constant. See the user’s guide for your system for more informa-
tion on external constants available to your programs.

5.4 Explicit Literal Notation

You can specify the value and data type of numeric literals by using a special notation. The format of
this notation in VAX—11 BASIC is:

[radix] num-str-lit [data-type]
Radix specifies an optional base.
In VAX—11 BASIC, radix can be:
e D Decimal (base 10)

e B Binary (base 2)

¢ O Octal (base 8)
e X Hexadecimal (base 16)

The VAX=11 BASIC default radix is D, but you can also specify binary, octal, and hexadecimal
integer literals. Binary, octal, and hexadecimal notation allows you to set or clear individual bits in
the representation of an integer. This feature is useful in forming conditional expressions and in using
logical operations.

In BASIC—PLUS-2, num-str-lit is always treated as decimal (base 10), so the format for explicit literal
notation in BASIC-PLUS-2 is:

num-str-lit [data-type]
Num-str-lit is a quoted string that can consist of digits and an optional decimal point when the radix is

decimal. You can also use E notation for floating-point constants. A leading minus sign cannot appear
inside the quotation marks, but can appear before the radix.

In VAX—11 BASIC, num-str-lit can be the digits 0 and 1 when the radix is binary, the digits O through 7
when the radix is octal, and the digits O through F when the radix is hexadecimal.

Data-type is an optional single letter that corresponds to a data-type keyword, excluding INTEGER
and REAL:

eB BYTE

e W WORD
el LONG
e F SINGLE

(continued on next page)

BASIC Reference Manual 21

e D DOUBLE

¢ G GFLOAT (VAX-11 BASIC only)

e H HFLOAT (VAX—11 BASIC only)

e P DECIMAL (VAX-11 BASIC only)

For example:
““255"L Specifies a LONG decimal constant with a value of 255.
“4000"'F Specifies a SINGLE decimal constant with a value of 4000.

—“125""B Specifies a BYTE decimal constant with a value of —125.

A quoted numeric string alone, without a radix and a data-type, is a string literal, not a numeric
literal. For example:

“255"W Specifies a WORD decimal constant with a value of 255.

255" Is a string literal.

In VAX—11 BASIC, if you specify a binary, octal, or hexadecimal radix, data-type must be an integer.
If you do not specify a data type, BASIC uses the default integer data type. For example:

B“11111111”B Specifies a BYTE binary constant with a value of —1.
B“11111111”"W Specifies a WORD binary constant with a value of 255.
B“11111111” Specifies a binary constant of the default data type (BYTE, WORD, or LONG).

B“11111111"F Is illegal because F is not an integer data type.

XFF'B Specifies a BYTE hexadecimal constant with a value of —1.
X“FF"'W Specifies a WORD hexadecimal constant with a value of 255.
X“FF’D Is illegal because D is not an integer data type.

0""377"'B Specifies a BYTE octal constant with a value of —1.
Q"377"W Specifies a WORD octal constant with a value of 255.
0"377"G Is illegal because G is not an integer data type.

When you specify a radix other than decimal, VAX—11 BASIC treats the numeric string as an unsigned
integer. When, however, this value is assigned to a variable or used in an expression, VAX—11 BASIC
treats the variable as a signed integer. For example:

100 DECLARE BYTE A
A = B"11111111"B
PRINT A

RUNNH

-1

In this example, VAX—11 BASIC sets all eight bits in storage location A. Because A is a BYTE integer, it
has only 8 bits of storage and its value is —1 (the 8—bit two’s complement of 1 is 11111111). If the
data type were W (WORD), VAX—11 BASIC would set the bits to 0000000011111111, and its value
would be 255.

22 BASIC Reference Manual

Note that in VAX—11 BASIC a D can appear in both the radix position and the data type position. D in
the radix position specifies that the numeric string is to be treated as a decimal number (base 10). D in
the data type position specifies that the value is to be treated as a double-precision, floating-point
constant. A P in the data type position specifies a packed decimal constant. For example:

“255"D Specifies a double-precision constant with a value of 255.

“255.55"P Specifies a DECIMAL constant with a value of 255.55.

You can also use explicit literal notation to represent a single-character string in terms of its 8-bit
ASCIl value. The format in VAX—11 BASIC is:

[radix] num-str-lit C

The format in BASIC-PLUS-2 is:

num-str-lit C

The letter C is an abbreviation for CHARACTER. The value of the numeric string must be between 0

and 255, inclusive.

This feature lets you create your own compile-time string constants containing nonprinting charac-

ters. For example:

100 DECLARE STRING CONSTANT CONTROL_G = "7"C
PRINT CONTROL_G

This example declares a string constant named CONTROL_G (ASCII decimal value 7). When BASIC
executes the PRINT statement, the terminal bell sounds.

See the BASIC User’s Guide for more information on explicit literal notation.

5.5 Predefined Constants

Predefined constants are symbolic representations of either: 1) ASCII characters or 2) mathematical
values. They are also called compile-time constants because their value is known at compile time
rather than at run time. Predefined constants:

e Format program output to improve readability

e Make source code easier to understand

Table 4 lists predefined constants supplied by BASIC, their ASCII values, and their purposes.

Table 4: Predefined Constants

Decimal
ASCIi
Constant Value Purpose
BEL (Bell) 7 Sounds the terminal bell
BS (Backspace) 8 Moves the cursor one position to the left
HT (Horizontal Tab) 9 Moves the cursor to the next horizontal tab stop

(continued on next page)

BASIC Reference Manual 23

Table 4: Predefined Constants (Cont.)

Decimal
ASCII
Constant Value Purpose
LF (Line Feed) 10 Moves the cursor to the next line
VT (Vertical Tab) 11 Moves the cursor to the next vertical tab stop
FF (Form Feed) 12 Moves the cursor to the start of the next page
CR (Carriage Return) 13 Moves the cursor to the beginning of the current line
SO (Shift Out) 14 Shifts out for communications networking, screen formatting, and alternate graphics
SI (Shift In) 15 Shifts in for communications networking, screen formatting, and alternate graphics
ESC (Escape) 27 Marks the beginning of an escape sequence
SP (Space) 32 Inserts one blank space in program output
DEL (Delete) 127 Deletes the last character entered
Pl None Represents the number Pl with the precision of the default floating-point data type

You can use predefined constants in many ways. For example, to print and underline a word on a
hard copy terminal:

110
120

RUNNH
NAME =

PRINT "NAME:" + BS + BS + BS + BS + BS + "____._ "
END

To print and underline a word on a VT100 video display terminal:

100
110

RUNNH
NAME =

PRINT ESC + "L[4mNAME:" + ESC + "[Om"
END

Note that the “m’’ in the above example must be lowercase.

You can also create your own predefined constants with the DECLARE CONSTANT statement. For
example:

10
20
30

DECLARE STRING CONSTANT Underlined_viame = ESC + "[4AmNAME:" + ESC + "[Om"
DECLARE DOUBLE CONSTANT D_PI = PI

PRINT Underlined_vname

PRINT D_PI,sPI

Line 10 defines Underlined_name as a string constant equivalent to the constant displayed by line

100 in

the previous example. Line 20 defines D_PI as a DOUBLE constant equal to the predefined

constant Pl. If the default REAL data size is SINGLE, the program can use both single-precision Pl and
double-precision D_PI. See the BASIC User’s Guide for more information on predefined constants
and their use in BASIC programs.

24

BASIC Reference Manual

6.0 Variables

A variable is a named quantity whose value can change during program execution. Each variable
name refers to a location in the program’s storage area. Each location can hold only one value at a
time. Variables of all data types can have subscripts that indicate their position in an array.

Depending on the program operations specified, the value of a variable can change from statement to
statement. BASIC uses the most recently assigned value when performing calculations. This value
remains until another statement assigns a new value to the variable.

You can declare variables implicitly or explicitly.
BASIC accepts these general types of variables:

® Floating-point |

® Integer

® String

® RFA

® Packed Decimal (VAX—11 BASIC only)

® Record (VAX-11 BASIC only)

See Chapter 9 in the BASIC User’s Guide for more information on RFA variables and Chapter 6 in
BASIC on VAX/VMS Systems for more information on record data structures.

6.1 Variable Names

The name given to a variable depends on whether the variable is internal or external to the program
and whether the variable is implicitly or explicitly declared.

1. The name of an internal, explicitly declared variable must conform to the following rules:

® The name consists of from 1 to 31 characters.

e The first character of the name must be an upper- or lowercase alphabetic character (A
through Z).

® The last character of the name cannot be a dollar sign ($) or a percent sign (%).

e The remaining characters, if present, can be any combination of upper- or lowercase letters
(A through Z), numbers (0 through 9), dollar signs ($), underscores (_), or periods (.). The use
of underscores in variable names helps improve readability and is preferred to the use of
periods.

2. The name of an internal, implicitly declared variable must conform to the following rules:

e The name consists of from 1 to 31 characters.

e The first character of the name must be an upper- or lowercase alphabetic character (A
through Z).

¢ The last character of the name can be either a dollar sign ($) to indicate a string variable or a
percent sign (%) to indicate an integer variable. If the last character is neither a dollar sign
nor a percent sign, the name indicates a variable of the default type.

BASIC Reference Manual 25

® The remaining characters, if present, can be any combination of upper- or lowercase letters
(A through Z), numbers (0 through 9), dollar signs ($), underscores (_), or periods (.). The use
of underscores in variable names helps improve readability and is preferred to the use of
periods.

3. The name of an external, explicitly declared variable in VAX—11 BASIC must follow the rules
for naming an internal, explicitly declared variable.

4. The name of an external, explicitly declared variable in BASIC-PLUS—2 must conform to the
following rules:

® The name consists of from one to six characters.

® The first character of the name must be an upper- or lowercase alphabetic character (A
through Z).

® The remaining characters, if present, can be any combination of upper- or lowercase letters

(A through Z), numbers (0 through 9), dollar signs ($), or periods (.).

5. A program cannot have external, implicitly declared variables since all implicitly declared
names except SUB subprogram names are internal to the program.

In all cases, no variable name can have embedded spaces.

6.2 Implicitly Declared Variables

BASIC accepts three types of implicitly declared variables:

® Floating-point (or default data type)
® Integer

® String

The name of an implicitly declared variable defines its data type. Integer variables end with a percent
sign (%), string variables end with a dollar sign ($), and variables of the default type (usually floating-
point) end with any allowable character except a percent sign or dollar sign. All three types of
variables must conform to the rules listed in Section 6.1 for naming variables. The current data-type
default (INTEGER, REAL, or, in VAX—11 BASIC, DECIMAL) determines the data type of implicitly
declared variables that do not end in a percent sign (%) or dollar sign ($).

A floating-point variable is a named location that stores a single floating-point value. The current
default size for floating-point numbers (SINGLE, DOUBLE, or, in VAX=11 BASIC, GFLOAT or
HFLOAT) determines the data type of the floating-point variable. The following are valid floating-
point variable names:

C L...5 ID_NUMBER
M1 BIG47 STORAGE.LOCATION.FOR.XX
F67T.) Z2. STRESS_VALUE

If a numeric value of a different data type is assigned to a floating-point variable, BASIC converts the
value to a floating-point number.

26 BASIC Reference Manual

—~——

An integer variable is a named location that stores a single integer value. The current default size for
integers (BYTE, WORD, or LONG) determines the data type of an integer variable. The following are
valid integer variable names:

ABCDEFG% C_8% RECORD.NUMBER%
B% D6E7% THE.VALUE.LWANT %

If the default data type is INTEGER, the percent suffix (%) is not necessary.

If you assign a floating-point or decimal (VAX—11 BASIC only) value to an integer variable, BASIC
truncates the fractional portion of the value. It does not round to the nearest integer. For example:

100 B%Z = -5.7

BASIC assigns the value =5 to the integer variable, not —6.

A string variable is a named location that stores strings. The following are valid string variable names:

C1$ M$ EMPLOYEE_NAMES$
L.6$ F34G$ TARGET.RECORD$
ABC1$ T..% STORAGE_SHELF_IDENTIFIER$

Strings have both value and length. BASIC sets all string variables to a default length of zero before
program execution begins, except those in a COMMON, MAP, or virtual array. See Sections 5.0 and
35.0 in Part IV of this manual for information on string length in COMMON and MAP areas. See the
BASIC User’s Guide for information on default string length in virtual arrays.

During execution, the length of a character string associated with a string variable can vary from zero
(signifying a null or empty string) to 65535 characters in VAX—11 BASIC or 32767 characters in
BASIC-PLUS-2.

6.3 Explicitly Declared Variables

In addition to implicitly declared variables described in the previous sections, BASIC lets you explic-
itly assign a data type to a variable or an array. For example:

100 DECLARE DOUBLE Interest_rate

Data-type keywords are described in Section 4.0. For more information on explicit declaration of
variables, see the sections on COMMON, DECLARE, DIMENSION, DEF, FUNCTION, EXTERNAL,
MAP, and SUB in Part IV of this manual and Chapter 5 in the BASIC User’s Guide.

6.4 Subscripted Variables and Arrays

A subscripted variable is part of an array. Arrays can be of any valid data type. Subscripted variables
and arrays follow the same naming conventions as nonsubscripted variables. Subscripts follow the
variable name in parentheses and define the variable’s position in the array. When you create an
array, bounds follow the array name in parentheses and define the maximum size of the array. For
example:

100 DECLARE STRING Emp_name(1000)
200 FOR I% = 0% TO 1000%
INPUT "Emplovee name" fEmp_name (I%)
NEXT I%

BASIC Reference Manual 27

The DECLARE statement in the example on the previous page sets the bounds of array Emp_name to
1000. Thus, the maximum value for an Emp_name subscript is 1000. The bounds of the array define
the maximum value for a subscript of that array.

In VAX=11 BASIC, subscripts can be any positive integer value from 0 to 2147483646 in LONG
mode. In BASIC-PLUS-2, subscripts can be any non-negative integer value from 0 to 32766.

Note

The compiler signals an error if a subscript is bigger than the allowable range. Also,
the amount of storage the system can allocate depends on available memory. There-
fore, very large arrays may cause an internal allocation error.

An array is a set of data ordered in any number of dimensions. A one-dimensional array, like
Emp_name(1000), is called a list or vector. A two-dimensional array, like Payroll_data(5,5), is called
a matrix. An array of more than two dimensions, like Big_array(15,9,2), is called a tensor.

BASIC arrays are always zero-based. That is, the number of elements in any dimension always
includes element number zero. For example, the array Emp_name(1000) contains 1001 elements,
since BASIC allocates element zero. Payroll_data(5,5) contains 36 elements because BASIC always
allocates row and column zero.

For all arrays except virtual arrays, the total number of array elements cannot exceed 2147483647
in VAX-11 BASIC and 32767 in BASIC-PLUS-2. For example, VAX—11 BASIC allows array
A(2147483646) but does not allow array A(1,2147483646). BASIC-PLUS-2 allows array A(32766)
but does not allow array A(1,32766).

VAX=11 BASIC arrays can have up to 32 dimensions. BASIC-PLUS—2 arrays can have up to eight
dimensions. You can also specify the type of data the array contains with data-type keywords. Table 2
lists BASIC data types.

An element in a one-dimensional array has a variable name followed by one subscript in parentheses.
There can be a space between the array name and the parenthetical subscripts. For example:
A(6%)
B (6%)
C$ (6%)

A(6%) refers to the seventh item in this list:

A(0%) A(1%) A(2%) A(3%) A(4%) A(5%) A(6%)
An element in a two-dimensional array has two subscripts, in parentheses, following the variable
name. The first subscript specifies the row number, the second specifies the column. Use a comma to

separate the subscripts. There can be a space between the array name and the parenthetical sub-
scripts. For example:

A (7%,2%) A%(4%,6%) A$(10%,10%)

28 BASIC Reference Manual

In the following table, the arrow points to the element specified by the subscripted variable
A%(4%,6%):

COL UMNSS
01 2 3 4 5 6
R o O0O0O0OOOO0OO
O1 00 O0O0O0O0OODO
w2 000O0O0O0DO
S 3 000 O0O0O0OO
4 0 0 0 0 0 0 0 0 =— A%(4%,6%)

An element in an array has as many subscripts as there are dimensions. An element of
Big_array(15%,9%,2%), for example, would have three subscripts.

Although a program can contain a variable and an array with the same name, this is regarded as poor
programming practice. Variable A and the array A(3%,3%) are separate entities and are stored in
completely separate locations and should have different names.

Note

A program cannot contain two arrays with the same name and a different number of
subscripts. For example, the arrays A(3%) and A(3%,3%) are invalid in the same
program.

BASIC arrays can be redimensioned at run time. See Chapter 7 in the BASIC User’s Guide for more
information on arrays.

6.5 Initialization of Variables

BASIC sets variables to zero or null values at the start of program execution. Variables initialized by
BASIC include:

e Numeric variables and in-storage array elements (except those in MAP or COMMON statements).
e String variables (except those in MAP or COMMON statements).

e Local variables in function definitions. In addition, BASIC sets these values to zero each time the
program calls the function.

e Variables in subprograms. Subprogram variables are initialized to zero or the null string each time
the subprogram is called.

BASIC does not initialize virtual arrays.

Note

In BASIC—PLUS—2, variables in a MAP statement referenced in an OPEN statement are
initialized to zero or the null string when the file is opened. In VAX—11 BASIC, these
variables are not initialized. You can also use MACRO-11 routines to initialize MAP
and COMMON areas. See BASIC on RSX—11M/M—PLUS Systems or BASIC on RSTS/E
Systems for more information.

BASIC Reference Manual 29

7.0 Expressions

BASIC expressions consist of operands (numbers, strings, constants, variables, functions, or array
elements) separated by:

¢ Arithmetic operators
e String operators
¢ Relational operators

® Logical operators

All BASIC expressions except string concatenation and invocations of string-valued functions yield
numeric values. The way you combine numeric operators and operands and use the resulting values
allows you to produce:

e Numeric expressions
e String expressions

¢ Conditional expressions

BASIC evaluates expressions according to operator precedence and uses the results in program execu-
tion. Parentheses can appear in expressions to group operands and operators, thus controlling the
order of evaluation.

The following sections explain the types of expressions you can create and the way BASIC evaluates
expressions.

7.1 Numeric Expressions

Numeric expressions consist of floating-point, integer, or packed decimal (VAX-11 BASIC only)
operands separated by arithmetic operators and optionally grouped by parentheses. Table 5 shows
how numeric operators work in numeric expressions.

Table 5: Arithmetic Operators

Operator | Example Use
+ A+B | AddBto A
- A-B Subtract B from A
* A*B Multiply A by B
/ A/B | Divide A by B
" A'B Raise A to the power B
** AxxB Raise A to the power B

In general, two arithmetic operators cannot occur consecutively in the same expression. Exceptions
are the unary plus and unary minus. The following expressions are valid:

Ax+ B
A*x—-B
A * (-B)

A*+—+ -8B

30 BASIC Reference Manual

The following expression is not valid:
A—=*=B

An operation on two numeric operands of the same data type yields a result of that type. For example:
A% + B% vyields an integer value of the default type.
G3 * M5 yields a floating-point value if the default type is REAL.

If the result of the operation exceeds the range of the data type, VAX—11 BASIC signals an overflow
error message. For example:

10 DECLARE BYTE A, B
A = 127
B = 127
PRINT A + B

a9 END

This example causes VAX—11 BASIC to signal the error ““Integer error or overflow’’ because the sum of
A and B (254) exceeds the range of —128 to + 127 for BYTE integers. Similar overflow errors occur for
REAL and DECIMAL data types whenever the result of a numeric operation is outside the range of the
data type.

Assigning a value of one data type to a variable of a different data type changes the assigned value’s
data type to the variable’s data type. For example:

10 A%Z = 5.1 * 6.3

This example assigns the value 32 to the integer variable A% even though the floating-point value of
the expression is 32.13. This is called numeric conversion. See Chapter 5 of the BASIC User’s Guide
for more information on numeric conversion.

7.1.1 Floating-Point and Integer Promotion Rules

When an expression contains operands with different data types, the data type of the result is deter-
mined by BASIC's data type promotion rules:

¢ With one exception, BASIC promotes operands with different data types to the lowest common data
type that can hold the largest or most precise possible value of either operand’s data type, then
performs the operation in that data type, and yields a result of that data type.

e The exception to the previous rule is that when an operation involves SINGLE and LONG data
types, BASIC promotes the LONG data type to SINGLE, rather than to DOUBLE, performs the
operation, and yields a result of the SINGLE data type.

Note that BASIC does a sign extend when converting BYTE and WORD integers to a higher INTEGER
data type (WORD or LONG). That is, the high order bit (the sign bit) determines how the additional
bits are set when the BYTE or WORD is converted to WORD or LONG. If the high order bit is zero
(positive), all higher-order bits in the converted BYTE or WORD are set to zero. If the high order bit is
one (negative), all higher-order bits in the converted BYTE or WORD are set to one.

Table 6 lists the data type results possible in numeric expressions that combine BYTE, WORD,
LONG, SINGLE, and DOUBLE data. Table 7 lists the data type results possible in numeric expres-
sions that combine the VAX—11 BASIC only data types, GFLOAT and HFLOAT. Note that in VAX-11
BASIC, when the operands are DOUBLE and GFLOAT, BASIC promotes both values to HFLOAT, and

BASIC Reference Manual 31

returns an HFLOAT value. The promotion of DOUBLE and GFLOAT to HFLOAT is necessary because
a DOUBLE value is more precise than a GFLOAT value, but cannot contain the largest possible
GFLOAT value. Consequently, BASIC promotes these data types to a data type that can hold the
largest and most precise value of either operand.

Table 6: Result Data Types in BASIC Expressions

Operand 2
Operand 1 BYTE WORD LONG SINGLE DOUBLE
BYTE BYTE WORD LONG SINGLE DOUBLE
WORD WORD WORD LONG SINGLE DOUBLE
LONG LONG LONG LONG SINGLE DOUBLE
SINGLE SINGLE SINGLE SINGLE SINGLE DOUBLE
DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

Table 7: VAX<11 BASIC Result Data Types

Operand 2

Operand 1 GFLOAT HFLOAT

BYTE GFLOAT HFLOAT
WORD GFLOAT HFLOAT
LONG GFLOAT HFLOAT
SINGLE GFLOAT HFLOAT

DOUBLE HFLOAT HFLOAT
GFLOAT GFLOAT HFLOAT
HFLOAT HFLOAT HFLOAT

As Table 6 shows, if one operand is SINGLE and one operand is DOUBLE, BASIC promotes the
SINGLE value to DOUBLE, performs the specified operation, and returns the resuilt as a DOUBLE
value. This promotion is necessary because the SINGLE data type has less precision than the
DOUBLE value, whereas the DOUBLE data type can represent all possible SINGLE values. If BASIC
did not promote the SINGLE value and the operation yielded a result outside of the SINGLE range,
loss of precision and significance would occur.

The data types BYTE, WORD, LONG, SINGLE, and DOUBLE form a simple hierarchy: if all operands
in an expression are these data types, the result of the expression is the highest data type used in the
expression.

7.1.2 DECIMAL Promotion Rules (VAX-11 BASIC only)

VAX-11 BASIC also allows the DECIMAL(d,s) data type. The number of digits (d) and the scale or
position of the decimal point (s) in the result of operations involving a DECIMAL value depends on the

32 BASIC Reference Manual

data type of the other operand. If one operand is DECIMAL and the other is DECIMAL or INTEGER,

the d and s values of the result are determined as follows:

e |If both operands are typed DECIMAL, and if both operands have the same digit (d) and scale (s)
values, no conversions occur and the result of the operation has exactly the same d and s values as
the operands. Note, however, that overflow can occur if the result exceeds the range specified by

the d value.

e If both operands are DECIMAL but have different digit and scale values, BASIC always uses the
larger number of specified digits for the result.

For example:

100 DECLARE DECIMAL(3,:2) A
DECLARE DECIMAL(4,3) B

Variable A allows three digits to the left of the decimal point and two digits to the right. Variable B
al